A modified concept of PCA to reduce the classification error using kernel SVM classifier

نویسندگان

  • Abhishek Kumar
  • Devesh Kumar
چکیده

This paper focuses on the mathematical technique PCA with the drawback of its mixing of data pixel. We have extracted principal directions of the covariance ellipse as done in PCA, but we will not blindly take the Eigen vectors corresponding to k largest values. Instead, we transform the data vectors into the new n– dimensional (n is dimension of old input space) vector space spanned by the Eigen vectors of the covariance matrix of the input data and then take one attribute at a time to perform classification. Then, we choose attributes corresponding to k largest accuracy measures this approach of Eigen vector selection shall prove to be more effective than the traditional one with the improved approach to the conventional method in which we have considered the feature vector corresponding to the kminimum error in order to reduce the dimensionality. The work has been implemented on more than 545 images of men and women to give efficient consequences in context of advance approach of PCA. Index term: Principal Component Analysis, Support Vector Machine classifier classification error Euclidian distance kenel svm , matlab

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object Recognition based on Local Steering Kernel and SVM

The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...

متن کامل

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

متن کامل

Wavelet support vector machine for induction machine fault diagnosis based on transient current signal

This paper presents establishing intelligent system for faults detection and classification of induction motor using wavelet support vector machine (W-SVM). Support vector machines (SVM) is well known as intelligent classifier with strong generalization ability. Application of nonlinear SVM using kernel function is widely used for multi-class classification procedure. In this paper, building ke...

متن کامل

Recognition of Multiple PQ Issues using Modified EMD and Neural Network Classifier

This paper presents a new framework based on modified EMD method for detection of single and multiple PQ issues. In modified EMD, DWT precedes traditional EMD process. This scheme makes EMD better by eliminating the mode mixing problem. This is a two step algorithm; in the first step, input PQ signal is decomposed in low and high frequency components using DWT. In the second stage, the low freq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015